Abstract
A method has been described and verified to determine the oxidation index in meat, through the quantification of thiobarbituric acid reactive substances (TBARS). The performance parameters evaluated were the verification of the wavelength at which the maximum absorbance occurs; working range of the instrument, limit of detection of the instrument (LDI); limit of detection and quantification of the method (LDM and LQM); method working range and precision such as repeatability and intermediate precision. It was found that the maximum absorbance occurs at 532 nm, the working range of the instrument was established between 0.2 μmol L-1 and 8.0 μmol L-1 using 1,1,3,3 as a calibration standard. -tetraethoxypropane (TEP), the LDI, LDM and LCM were 0.01, 0.04 and 0.09 mg kg-1 respectively, expressed in Malondialdehyde (MDA) per kilogram of fresh sample, the working range of the method has as the lower limit to the LQM and as the upper limit to the value of 2.50 mg kg-1 and the coefficients of variation for the repeatability and intermediate precision tests were less than 11% and 16%.
References
AOAC. (2016). Appendix F: Guidelines for Standard Method Performance Requirements. Recuperado de: https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf
Cúspides, E. y Castillo, J. (2008). La peroxidación lipídica en el diagnóstico del estrés oxidativo del paciente hipertenso: Realidad realidad o mito. Revista Cubana de Investigaciones Biomédicas, 27(2), 0-0. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S086403002008000200003&lng=es&tlng=es.
Erkan, N. y Ozden, O. (2008). Quality assessment of whole and gutted sardines (Sardina pilchardus) stored in ice. International Journal of Food Science and Technology, 43, 1549–-1559. https://doi.org/10.1111/j.1365-2621.2007.01579.x
Eurolab EspanaEspaña. P.P. Morillas y colaboradores. GuiaGuía Eurachem: La adecuación al uso de los métodos analíticos – Una Guia Guía de laboratorio para la validación de métodos y temas relacionados (1a ed. 2016). Disponible en www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_ES.pdfwww.eurachem.org.
Hernández, J. (2016). Implementación de la técnica para la determinación cuantitativa de malondialdehidos en materias primas (harina y aceite de pescado) y productos terminados de piscicultura para la compañía industrial de productos agropecuarios (CIPA S.A). Recuperado de: https://repositorio.utp.edu.co/server/api/core/bitstreams/c9eb3357-4eff-4683-a469-b357d9f2b161/content
Huh, S., .; Kim, H.-J., .; Lee, S., .; Cho, J., .; Jang, A. and y Bae, J. (2021). Utilization of Electrical electrical Impedance impedance Spectroscopy spectroscopy and Image image Classification classification for Nonnon-Invasive invasive Early early Assessment assessment of Meat meat Freshnessfreshness. Sensors, 21, 1001. https://doi.org/10.3390/s21031001
Medina, J., .; Melica, A.,; Lorenzati, J. y Pérez, G. (2016). Study of a protocol for determining autoxidation in lipids of freshwater fish products. Nexo Revista Científica. , 29(01), 14-21. http://dx.doi.org/10.5377/nexo.v29i01.4396.
Papastergiadis, A.; Mubiru, E.; Van Langenhove, H. y De Meulenaer, B. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in various foods. Journal of Agricultural and Food Chemistry, 60(38), 9589-9594.doi:10.1021/jf302451c
Patton, S. y Kurtz, G. (1951). 2-thiobarbituric acid as a reagent for detecting milk fat oxidation. J. DairySci. , 34: , 669-674. Recuperado de: https://reader.elsevier.com/reader/sd/pii/S0022030251917638?token=70AC09BDB18D8325AE4C12B20C920C6A6007BF237CAE82CE6823DA6E7F8B78CA3A883C69E130F1E047CE7AE63B64F40B&originRegion=us-east-1&originCreation=20221014133615
Papastergiadis, A., Mubiru, E., Van Langenhove, H., y De Meulenaer, B. (2012). Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. Journal of Agricultural and Food Chemistry, 60(38), 9589–9594.doi:10.1021/jf302451c
Reitznerová, A., .; Šuleková, M., .; Nagy, J., .; Marcinčák, S., .; Semjon, B., .; Čertík, M., y Klempová, T. (2017). Lipid Peroxidation peroxidation Process process in Meat meat and Meat meat Productsproducts: A a Comparison comparison Study study of Malondialdehyde malondialdehyde Determination determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reversereverse-Phase phase Highhigh-Performance performance Liquid liquid Chromatographychromatography. Molecules, 22(11), 1988. doiDOI:10.3390/molecules22111988.
Rojano, B., .; Gaviria, C. y Sáez, J. (2008). Determinación de la actividad antioxidante en un modelo de peroxidación lipídica de mantequilla inhibida por el isoespintanol. vitaeVitae, 15(2), 212-218. Recuperado de:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=s0121-40042008000200002&lng=en&tlng=es
Wang, B., .; Pace R.,.; Dessai A., .; Bovell-Benjamin, A and y Phillips B. (2002). Modified extraction method for determining 2-thiobarbituric acid values in meat with increased specificity and simplicity. Journal of Food Science, 67, pp. 2833–-2836.
Zhang H., Wu J., Guo X. (2016). Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellness, 5 (1) , pp. 39-48.https://doi.org/10.1016/j.fshw.2015.11.003
Zárate, M. y AvilaÁvila, F. (2017). Optimización de la técnica de TBA para medir la estabilidad oxidativa en carne de pollo. Jóvenes en la ciencia, 2(1), 49–-52. Recuperado a partir de: https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/996
Zhang, H.; Wu, J. y Guo, X. (2016). Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellness, 5(1), 39-48. https://doi.org/10.1016/j.fshw.2015.11.003

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Amir Serpa Ortega, Lorena AGUAYO ULLOA
